ToF-SIMS studies of nanoporous PMSSQ materials: kinetics and reactions in the processing of low-K dielectrics for ULSI applications
نویسندگان
چکیده
Detailed investigations of spin-on polymethylsilsesquioxane (PMSSQ)-based low-K materials were carried out by means of time-of-flight secondary ion mass spectrometry (ToF-SIMS) to identify the reaction kinetics and mechanisms occurring during the manufacturing of nanoporous dielectrics for ULSI applications. Analysis of the static SIMS fingerprints led to the identification of key species related to the PMSSQ oligomers, as well to the observation of features related to the initial functionality of the precursor materials. The intensity variations of the key species with thermal curing reveal the polymerization kinetics of the dielectric precursors. In addition, thermal decomposition and volatilization of the polymethylmethacrylate–dimethylaminoethylmethacrylate copolymer (PMMA-co-DMAEMA) porogen was established based on the detection of fragments related to the different moieties of the copolymer molecule. Porogen degradation takes place via cleavage of the DMAEMA co-monomer at low temperature, followed by volatilization of the residual PMMA-enriched polymer upon annealing at higher temperature. Several complementary phenomena occurring during the formation of these complex systems can be evaluated by ToF-SIMS, revealing major features crucial to materials development and the manufacturing of novel low-dielectric-constant (K) dielectrics. Copyright 2004 John Wiley & Sons, Ltd.
منابع مشابه
Material Characterization and the Formation of Nanoporous PMSSQ Low-K Dielectrics
A novel metrology strategy has been developed and applied to characterize the complex chemical transformations which are required to form spin-cast nanoporous low-K materials. Surface analysis based on Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) has been applied in static and dynamic modes, and coupled with X-ray Photoemission Spectroscopy (XPS), to observe the compositional and c...
متن کاملNanoporous Xerogel for Adsorption of Pb2+ and Cd2+
Classical xerogels are robust, inexpensive and nontoxic materials with low-ordered nanoporous structures. In water streams where the pH is higher than the Point of Zero Charge, the surface of classical xerogels such as tetraethoxy orthosilan (TEOS) xerogel is negatively charged. It was assumed that a xerogel can work as a strong adsorbent for metal ions without further modification. Therefore, ...
متن کاملSupercritical CO2 Extraction of Porogen Phase: An Alternative Route to Nanoporous Dielectrics
We present a supercritical CO 2 (SCCO 2) process for the preparation of nanoporous organosilicate thin films for ultra low dielectric constant materials. The porous structure was generated by SCCO 2 extraction of a sacrificial poly(propylene glycol) (PPG) from a nanohybrid film, where the nanoscopic domains of PPG porogen are entrapped within the crosslinked poly(methylsilsesquioxane) (PMSSQ) m...
متن کاملاندازهگیری نمای فراوانی فسفر کشت شده فراسطحی در سیلیسیوم
We have initiated a study to extract concentration profiles of ultra shallow phosphorous implants in silicon complementing published work on ultra shallow boron implant profiles. There is an ever-increasing interest in the production of p-n junctions in silicon to create the new generations of ultra large scale integrated (ULSI) devices. Such junctions can be formed by implantation do pants (...
متن کاملIsothermal Recrystallization Behavior of Cold-deformed Martensite in an Ultra-low-carbon Microalloyed Steel
One of the most promising ways to produce a grain-refined microstructure in some steel materials is the thermomechanical processing route of subcritical recrystallization annealing of a cold-deformed martensite structure. In the present study, the microstructural evolutions and the associated recrystallization kinetics under various subcritical annealing heat treatment conditions are explored i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004